Synthesis and Characterization of Nanocrystalline Ni50Al50-xMox (X=0-5) Intermetallic Compound During Mechanical Alloying Process

نویسندگان

  • A. Khajesarvi Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran
  • G. H. Akbari Department of Materials Science and Engineering, Shahid Bahonar University, 76135-133, Kerman, Iran
چکیده مقاله:

In the present study, nanocrystalline Ni50Al50-xMox (X = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. AlNi compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many researchers. Powders produced from milling were analyzed using scanning electron microscopy (SEM) and X-ray diffractometry (XRD). The results showed that intermetallic compound of NiAl formed at different stage of milling operation. It was concluded that at first disordered solid solution of (Ni,Al) was formed then it converted into ordered intermetallic compound of NiAl. With increasing the atomic percent of molybdenum, average grain size decreased from 3 to 0.5 μm. Parameter lattice and lattice strain increased with increasing the atomic percent of molybdenum, while the crystal structure became finer up to 10 nm. Also, maximum microhardness was obtained for NiAl49Mo1 alloy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

synthesis and characterization of nanocrystalline ni50al50-xmox (x=0-5) intermetallic compound during mechanical alloying process

in the present study, nanocrystalline ni50al50-xmox (x = 0, 0.5, 1, 2.5, 5) intermetallic compound was produced through mechanical alloying of nickel, aluminum, and molybdenum powders. alni compounds with good and attractive properties such as high melting point, high strength to weight ratio and high corrosion resistance especially at high temperatures have attracted the attention of many rese...

متن کامل

Synthesis and Characterization of Nanocrystalline Ni3Al Intermetallic during Mechanical Alloying Process

In this research, formation of nanocrystalline Ni3Al intermetallic from Ni and Al elemental powders by mechanical alloying (MA) process and its characterization was investigated. Therefore, the evolutions in microstructure such as phase transformation, oxidation in air and introduction of Fe impurity from milling media after MA were evaluated using XRD, Rietveld refinement, TEM, SEM, EDS and IC...

متن کامل

Effect of Mo Addition on Nanostructured Ni50Al50 Intermetallic Compound Synthesized by Mechanical Alloying

The mechanical alloying process was used to synthesize the Ni50Al50−xMox nanocrystalline intermetallic compound using pure Ni and Al elemental powder. This process was carried out in the presence of various Mo contents as a micro-alloying element for various milling times. Structural changes of powder particles during mechanical alloying were studied by X-ray diffractometry (XRD) and scanning e...

متن کامل

Eddy Current and Microwave Characterization of (fe65co35)70al30 Nanocrystalline Alloy Synthesized by Mechanical Alloying Process

An investigation was conducted to explore the applicability of eddy current and microwave techniques to characterize grains size variation during mechanical alloying. A series of Nanocrystalline (Fe65Co35)70Al30 samples have been prepared, these structures are prepared using mechanical alloying based on planetary ball mill under several milling conditions. Mechanical alloying is a non-equilibri...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 5  شماره 3

صفحات  227- 235

تاریخ انتشار 2015-07-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023